Part Number Hot Search : 
74HC139 LCD12C RS804 JXG84P2 RTF025 NTE5249A A102J 037N0059
Product Description
Full Text Search
 

To Download BU808DFH Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
BU808DFH
HIGH VOLTAGE FAST-SWITCHING NPN POWER DARLINGTON TRANSISTOR
s
s
s s s s s
s
NEW Fully Plastic TO-220 for HIGH VOLTAGE APPLICATIONS NPN MONOLITHIC DARLINGTON WITH INTEGRATED FREE-WHEELING DIODE HIGH VOLTAGE CAPABILITY ( > 1400 V ) HIGH DC CURRENT GAIN ( TYP. 150 ) LOW BASE-DRIVE REQUIREMENTS DEDICATED APPLICATION NOTE AN1184 FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING CREEPAGE PATH > 4 mm TO-220FH
(see page 6)
APPLICATIONS s COST EFFECTIVE SOLUTION FOR HORIZONTAL DEFLECTION IN LOW END TV UP TO 21 INCHES. DESCRIPTION The BU808DFH is a NPN transistor in monolithic Darlington configuration. It is manufactured using Multiepitaxial Mesa technology for cost-effective high performance.
INTERNAL SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
Symbol V CBO V CEO V EBO IC I CM IB I BM P tot V isol T stg Tj Parameter Collector-Base Voltage (I E = 0) Collector-Emitter Voltage (I B = 0) Emitter-Base Voltage (I C = 0) Collector Current Collector Peak Current (t p < 5 ms) Base Current Base Peak Current (t p < 5 ms) Total Dissipation at T c = 25 o C Insulation Withstand Voltage (RMS) from All Three Leads to Exernal Heatsink Storage Temperature Max. Operating Junction Temperature Value 1400 700 5 8 10 3 6 42 2500 -65 to 150 150 Unit V V V A A A A W V
o o
C C
April 2002
1/7
BU808DFH
THERMAL DATA
R thj-case Thermal Resistance Junction-case Max 2.98
o
C/W
ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified)
Symbol I CES I EBO V CE(sat) V BE(sat) h FE Parameter Collector Cut-off Current (V BE = 0) Emitter Cut-off Current (I C = 0) Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage DC Current Gain INDUCTIVE LOAD Storage Time Fall Time INDUCTIVE LOAD Storage Time Fall Time Diode Forward Voltage Test Conditions V CE = 1400 V V EB = 5 V IC = 5 A IC = 5 A IC = 5 A IC = 5 A I B = 0.5 A I B = 0.5 A V CE = 5 V V CE = 5 V 60 20 Min. Typ. Max. 400 100 1.6 2.1 230 Unit A mA V V
T C = 100 C
o
ts tf ts tf VF
V CC = 150 V I B1 = 0.5 A V CC = 150 V I B1 = 0.5 A T C = 100 o C IF = 5 A
IC = 5 A V BE(off) = -5 V IC = 5 A V BE(off) = -5 V
3 0.8 2 0.8 3
s s s s V
Pulsed: Pulse duration = 300 s, duty cycle 1.5 %
Safe Operating Area
Thermal Impedance
2/7
BU808DFH
Derating Curve DC Current Gain
Collector Emitter Saturation Voltage
Base Emitter Saturation Voltage
Power Losses at 16 KHz
Switching Time Inductive Load at 16KHz
3/7
BU808DFH
Switching Time Inductive Load at 16KHZ Reverse Biased SOA
BASE DRIVE INFORMATION In order to saturate the power switch and reduce conduction losses, adequate direct base current IB1 has to be provided for the lowest gain hFE at 100 oC (line scan phase). On the other hand, negative base current IB2 must be provided to turn off the power transistor (retrace phase). Most of the dissipation, in the deflection application, occurs at switch-off. Therefore it is essential to determine the value of IB2 which minimizes power losses, fall time tf and, consequently, Tj. A new set of curves have been defined to give total power losses, ts and tf as a function of IB2 at both 16 KHz scanning frequencies for choosing the optimum negative drive. The test circuit is illustrated in figure 1. Inductance L1 serves to control the slope of the negative base current IB2 to recombine the excess carrier in the collector when base current is still present, this would avoid any tailing phenomenon in the collector current. The values of L and C are calculated from the following equations: 1 1 1 L (IC)2 = C (VCEfly)2 = 2 f = 2 2 L C Where IC= operating collector current, VCEfly= flyback voltage, f= frequency of oscillation during retrace.
4/7
BU808DFH
Figure 1: Inductive Load Switching Test Circuits.
Figure 2: Switching Waveforms in a Deflection Circuit
5/7
BU808DFH
TO-220FH (Fully plastic High voltage) MECHANICAL DATA
DIM. MIN. A B D E F F1 F2 G G1 H L2 L3 L4 L5 L6 L7 L8 L9 15.9 9 14.5 2.4 28.6 9.8 3.4 16.4 9.3 15 0.626 0.354 0.570 0.094 4.4 2.5 2.5 0.45 0.75 1.3 1.3 4.95 2.4 10 16 30.6 10.6 1.126 0.385 0.134 0.645 0.366 0.590 mm TYP. MAX. 4.6 2.7 2.75 0.7 1 1.8 1.8 5.2 2.7 10.4 MIN. 0.173 0.098 0.098 0.017 0.030 0.051 0.051 0.195 0.094 0.393 0.630 1.204 0.417 inch TYP. MAX. 0.181 0.106 0.108 0.027 0.039 0.070 0.070 0.204 0.106 0.409
P011W
6/7
BU808DFH
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics (c) 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com
7/7


▲Up To Search▲   

 
Price & Availability of BU808DFH

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X